If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20m^2-41m+2=0
a = 20; b = -41; c = +2;
Δ = b2-4ac
Δ = -412-4·20·2
Δ = 1521
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1521}=39$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-41)-39}{2*20}=\frac{2}{40} =1/20 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-41)+39}{2*20}=\frac{80}{40} =2 $
| 14x-30=96 | | 4x(3+2x)+7=38 | | 13x-33=71 | | 2/3=5d−1/2 | | 20=15-3f | | -6=2(n-2) | | 9r+9=207 | | (7i-2)(3i+1)=0 | | 3r+4=97 | | 3y+4=130 | | m(3-m)=-9m | | -83+14x=77+4x | | 90+(3x+43)+(4x+12)=180 | | k2+12k+23=0 | | (4x+5)+(6x+3)+(5x+7)=180 | | 2(x-2)+5(x-5=6 | | 13y+3y=256 | | Y=7.5x+54 | | -119+8x=79+2x | | 2(x-4)/5=4 | | (4x-5)+(3x-7)+(x)=180 | | -8d=-10−10d | | (4x-8)(5x+2)=0 | | (3^2x)(4^x)=6 | | Y=2.4x+75.6 | | (32x)(4x)=6 | | Y=7.5x=54 | | 3+4/5=7-2x | | 6n-26=4n | | y-3=5(1.4-2) | | 34=v/4+11 | | Y=0x+54 |